viernes, 27 de marzo de 2015

Welcome to the age of physiology: Bienvenidos a la era de la fisiología o medición de emociones

Nota: Versión en español al final del texto en inglés


Gawain Morrison, a Belfast-based film producer, is adamant that in five years’ time, we’ll be living in the “age of physiology”: a time when anyone, anywhere will be able to track their vitals, analyse their data and put it to work for them - a constant biofeedback loop.

Morrison is doing his part to hasten this coming age. Through his previous company, Filmtrip, he helped produce the world’s first bio-responsive horror film - Unsound - in which scenes, music and sound effects would be altered based on the biometric readings of participating audience members.
Unsound used two different metrics to shape its 15-minute run-time: heart rate and galvanic skin response - a measure of the electrical conductance of skin, which varies according to sweat levels.
The film made its debut at the SXSW Festival in 2011. After the screening, Morrison recalls how one of the participants came up to him to say: “If you could figure out a way to make this go mobile, you would be on to something serious.”
Two years on, that challenge has been met. Morrison and his Filmtrip business partner Shane McCourt have launched the company Sensum, and their technology for measuring skin conductance now fits on a wristband, with wires connecting to the index and middle fingers.
When used in tandem with Sensum’s mobile and tablet app, wearers can track their physiological responses to different stimuli - be it audio, video or interactive content like websites. Morrison and McCourt envision two distinct but related applications for Sensum’s technology. There’s a pure metrics play, where it’s used to help advertisers test the emotional resonance of a piece of content. Then there is the interactive potential, as demonstrated by Unsound.

The right mood

Sensum is not alone in looking at ways to use biometric data to shape our experiences. Apple was recently awarded a patent for ‘smart’ headphone technology that could monitor user activity and physiological data, like temperature, perspiration and heart rate, and feed that back to a paired electronic device, such as an iPad or iPhone.
“Examples of physical monitoring can vary,” the patent filing says. “However, one example is that the electronic device can estimate whether the user is tired, and if so, can induce or motivate the user to continue. As another example, the electronic device can sense when the user is running uphill, and generate the appropriate motivation for the benefit of the user” - playing an energetic song, perhaps, or providing encouraging words (via Siri, no doubt).
But Apple has another reason for wanting to capture biometric data. A separate patent, filed in January, outlines a process for inferring a person’s mood - using a mix of physiological, behavioural and location data - in order to target them with appropriate content. Adverts, most likely.
Of course, using the same processes, they should be able to work out when a piece of content makes you angry and never show it to you again. Ergo, no more annoying ads.
Originally published in Impact Issue 5, April 2014Click here for more information, or to subscribe.

Versión en español: Bienvenidos a la era de la fisiologia o medición de emociones

Gawain Morrison, un productor de cine con sede en Belfast, está convencido de que en el plazo de cinco años, estaremos viviendo en la "era de la fisiología": un momento en que cualquier persona, en cualquier lugar será capaz de realizar un seguimiento de sus signos vitales, analizar sus datos y ponerla a trabajar para ellos - un bucle de biofeedback constante.


Morrison está haciendo su parte para acelerar esta edad que viene. A través de su empresa anterior, Filmtrip, él ayudó a producir la primera película de terror bio-sensible del mundo - Unsound - en los que las imágenes, la música y los efectos sonoros serían alterados en función de las lecturas biométricas de los miembros del público.
Unsound utiliza dos métricas diferentes para dar forma a sus 15 minutos de tiempo de ejecución: la frecuencia cardiaca y la respuesta galvánica de la piel - una medida de la conductancia eléctrica de la piel, que varían de acuerdo a niveles de sudor.
La película se estrenó en el Festival SXSW en 2011. Después de la proyección, Morrison recuerda como uno de los participantes se le acercó para decirle: "Si se pudiera encontrar una manera de hacer esto desde el móvil, estaría frente a algo realmente grande"
Dos años después, ese reto se ha cumplido. Morrison y su socio Filmtrip Shane McCourt han puesto en marcha la empresa Sensum, y su tecnología para medir la conductancia de la piel ahora se queda en una pulsera, con cables de conexión con el índice y el dedo medio.
Cuando se utiliza en conjunto con la aplicación móvil y la tableta de Sensum, los usuarios pueden realizar un seguimiento de sus respuestas fisiológicas a estímulos diferentes - ya sea de audio, video o contenido interactivo como sitios web. Morrison y McCourt prevén dos aplicaciones distintas pero relacionadas de la tecnología de Sensum. Es un juego de métricas puras, donde éstas se utilizan para ayudar a los anunciantes a testear la resonancia emocional del contenido de una pieza publicitaria. Luego está el potencial interactivo, como fue demostrado por Unsound

El estado de ánimo adecuado


Sensum no está solo en el estudio de formas de utilizar los datos biométricos para dar forma a nuestras experiencias. Apple recibió recientemente una patente para tecnología de auriculares "inteligentes" que pueden monitorear la actividad del usuario y los datos fisiológicos, como la temperatura, el sudor y la frecuencia cardíaca, y volcarlos a un dispositivo electrónico asociado, como un iPad o iPhone.

"Los ejemplos de seguimiento físico pueden variar", dice la presentación de la patente. "Sin embargo, un ejemplo es que el dispositivo electrónico puede estimar si el usuario está cansado, y si es así, puede inducir o motivar al usuario para continuar. Como otro ejemplo, el dispositivo electrónico puede detectar cuando el usuario está realizando una actividad física cuesta arriba, y generar la motivación apropiada para animarlo brindando otro beneficio para el usuario "- se reproduce una canción enérgica, tal vez, o la reproducción de palabras de aliento.
Sin embargo, Apple tiene otro motivo para querer capturar datos biométricos. Una patente separada, presentada en enero, describe un proceso para inferir el estado de ánimo de una persona - con ayuda de una mezcla de datos fisiológicos, datos sobre el comportamiento y la ubicación - con el fin de dirigirse a ellos con un contenido apropiado. Anuncios publicitarios lo más probable.
Por supuesto, el uso este tipo de procesos, deben ser capaz de no trabajar cuando un fragmento de contenido hace enojar al usuario, de modo de no mostrarle ese contenido de nuevo. Ergo, que no se repitan anuncios molestos.

lunes, 9 de marzo de 2015

Workshop Internacional de Consumer Insight y Branding a dictarse en Asunción del Paraguay.



Tengo el agrado de invitarlos al curso que pronto dictaré en Asunción los días 23 y 24 de Marzo, en los cuales abordaremos distintas temáticas tales como descubrir que es lo que desean los consumidores, que darles, describir y descubrir INSIGHTS y a partir de ellos como se los utiliza. Veremos el desarrollo de conceptos de marketing los cuales han sido exitosos, la creación de posicionamientos y marcas.

Por consultas y disponibilidad favor de comunicarse con: Cecilia Leguizamón, Coordinación y Atención de Servicios al Cliente. CEPROCAL, Unión Industrial Paraguaya, Cerro Corá 1038 c/EEUU. Tel (021) 212 556/8. cecilia@uip.org.py , www.ceprocal.org.py
Video Invitación al curso de Consumer Insight y Branding

miércoles, 18 de febrero de 2015

Los alimentos tienen mejores cualidades sensoriales si se cocinan a gran altitud



Una investigación realizada por el Centro de Investigación Nestlé (NRC) de Lausanne concluye que en las cocciones a gran altitud, los alimentos tienen mejores cualidades organolépticas, pierden menos peso y son más ricos en ácidos orgánicos, aminoácidos e hidratos de carbono.


Los expertos explican que los alimentos cocinados en un restaurante como el ThreeSixty de Saas-Fee (localidad conocida como La Perla de los Alpes), situado a unos 3.500 metros de altura sobre el nivel del mar, tenían un perfil sensorial mucho más intenso que los cocinados en el laboratorio Nestlé situado a una altura de 833 metros sobre el nivel del mar.




La causa por la que ocurre esto tiene que ver con la presión atmosférica, a mayor altura es menor y la temperatura a la que hierve el agua para preparar un caldo de verduras es más baja. A nivel del mar el agua entra en ebullición a los 100° C, mientras en el restaurante ThreeSixty entra en ebullición al alcanzar los 85° C. Si nos vamos a una mayor altura, al Everest, cuya altitud es de unos 8.850 metros, el agua hierve a unos 68° C. 

Los investigadores se propusieron demostrar científicamente que cocinar a baja presión tiene un efecto positivo sobre las cualidades organolépticas de los alimentos, para ello contaron con el respaldo un grupo de expertos catadores.



 


El sabor es un factor clave en la aceptación de los alimentos y las preferencias de los consumidores, por ello los investigadores prepararon diferentes caldos vegetales utilizando las mismas cantidades de todos los ingredientes en el mencionado restaurante y en el laboratorio, es decir, a una presión atmosférica más baja y a una más alta. 

Los resultados obtenidos se analizaron por procedimientos de laboratorio y por el panel de expertos catadores, con ello tendrían la información sobre las distintas combinaciones de presión atmosférica y tiempos de cocción, con el impacto en el perfil molecular de las preparaciones, su calidad culinaria y su perfil sensorial.



Los expertos señalan que existen técnicas como la cocción a baja presión, por ejemplo la cocina al vacío (sous vide), en la que los alimentos se sellan en bolsas de plástico y se cocinan en agua a una temperatura relativamente baja, de entre 65 y 85 °C, durante varias horas. Este tipo de técnicas de cocción han sido estudiadas ampliamente para conocer las propiedades sensoriales de los alimentos haciendo foco en la textura de los mismo. Sin embargo, ha sido poco estudiado el impacto de la ebullición en relación al perfil del sabor en cocciones con baja presión atmosférica.

En la investigación se utilizaron las mismas cantidades de nabo, puerro, apio y zanahorias en los caldos que se cocinaron a presión ambiente (establecida en 112 metros sobre el nivel del mar), alta y baja presión, recordemos que la altura modifica tanto la temperatura como la presión atmosférica al modificarse la densidad del aire. 
Los investigadores midieron el pH, el peso, la pérdida de sólidos y líquidos durante las cocciones, realizaron análisis de los compuestos volátiles y no volátiles, moléculas aromáticas, ácidos orgánicos, hidratos de carbono y aminoácidos.

Los resultados obtenidos se correlacionaron con los resultados arrojados por el panel de expertos catadores, éstos evaluaron características como la intensidad global de los caldos, la dulzura y la salinidad, también evaluaron por separado cada ingrediente de los caldos midiendo los atributos sensoriales de cada uno de ellos.



Los investigadores concluyeron que la cocción a baja presión reduce la pérdida de peso de los alimentos y por tanto aumenta el "rendimiento" que ofrecen los vegetales. Apuntan que también origina caldos que son significativamente más ricos en ácidos orgánicos, aminoácidos e hidratos de carbono, por lo que se mejoran los perfiles de compuestos volátiles, no volátiles y sensoriales. Se apunta, en el caso del puerro, que la cocción a baja presión (mayor altitud) mejora los compuestos volátiles de azufre, por lo que el puerro tenía un aroma más intenso.
Por tanto, se concluye que la baja presión en la ebullición se puede utilizar para mejorar el perfil del sabor de las preparaciones culinarias al preservar los compuestos aromáticos más delicados, algo que facilitaría mejorar las preferencias de los consumidores.
Consideran que esta forma de cocción podría extenderse a cualquier otro compuesto térmicamente sensible, como por ejemplo las vitaminas, lo que conduciría a mejorar la calidad y cantidad de los nutrientes que contienen los alimentos.

Se puede consultar el estudio realizado por el Centro de Investigación Nestlé de Lausanne, en este artículo publicado en la revista científica Agricultural anf Food Chemistry.

domingo, 25 de enero de 2015

Is synaesthesia more common in autism?

Is synaesthesia more common in autism?

Simon Baron-Cohen1Donielle Johnson1*Julian Asher1Sally Wheelwright1Simon E Fisher23Peter K Gregersen4 and Carrie Allison1


1Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Rd, Cambridge CB2 8AH, UK
2Max Planck Institute for Psycholinguistics, 6500 AH, Nijmegen, The Netherlands
3Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
4Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore-LIJ, Manhasset 11030, NY, USA
For all author emails, please log on.





Molecular Autism 2013, 4:40  doi:10.1186/2040-2392-4-40
The electronic version of this article is the complete one and can be found online at:http://www.molecularautism.com/content/4/1/40

Received:18 June 2013
Accepted:18 September 2013
Published:20 November 2013
© 2013 Baron-Cohen et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.




Abstract

Background

Synaesthesia is a neurodevelopmental condition in which a sensation in one modality triggers a perception in a second modality. Autism (shorthand for Autism Spectrum Conditions) is a neurodevelopmental condition involving social-communication disability alongside resistance to change and unusually narrow interests or activities. Whilst on the surface they appear distinct, they have been suggested to share common atypical neural connectivity.

Methods

In the present study, we carried out the first prevalence study of synaesthesia in autism to formally test whether these conditions are independent. After exclusions, 164 adults with autism and 97 controls completed a synaesthesia questionnaire, Autism Spectrum Quotient, and Test of Genuineness-Revised (ToG-R) online.

Results

The rate of synaesthesia in adults with autism was 18.9% (31 out of 164), almost three times greater than in controls (7.22%, 7 out of 97, P <0 .05="" autism.="" for="" p="" proved="" synaesthetes="" tog-r="" unsuitable="" with="">

Conclusions

The significant increase in synaesthesia prevalence in autism suggests that the two conditions may share some common underlying mechanisms. Future research is needed to develop more feasible validation methods of synaesthesia in autism.

Background

Synaesthesia occurs in 4% of the population [1]. Autism spectrum conditions (henceforth, autism) occur in 1% of the population [2]. If these conditions are independent, then synaesthesia and autism should co-occur in only 4 in 10,000 people. However, both are thought to involve atypical neural connectivity [3-5], which may point to a shared aetiology.
Synaesthesia occurs when the stimulation of one sensory modality automatically evokes a perception in another unstimulated modality [6]. The most common forms of synaesthesia involve written and/or auditory stimuli triggering colours [1,7]. Individuals with ‘developmental synaesthesia’ report having the condition for as long as they can remember [8]. Developmental synaesthesia shows familial clustering and (as yet unidentified) genetic factors are likely to play a significant role [9-11]. Developmental synaesthesia is distinct from ‘acquired synaesthesia’ where individuals report first experiencing synaesthesia later in life, after an inducing event such as the use of hallucinogenic drugs [12]. Developmental synaesthesia is not easily explained by learning because siblings with this condition, exposed to similar environments, often report different colours for the same inducer, or experience different variants of the trait [10], although this has been disputed [13]. Crucially, people with developmental synaesthesia describe their experiences as automatic and involuntary, in contrast to metaphoric associations that are voluntary and are not intended to be taken literally [14].
Neuroimaging studies confirm that synaesthesia is associated with differences in brain structure and/or function [15-18]. The hyper-connectivity hypothesis proposes that people with synaesthesia have excessive neural connections between different regions, connections that are diminished or absent from unaffected individuals [5,19-21]. Evidence for this hypothesis comes from a diffusion tensor imaging study [18] showing that people with grapheme-colour synaesthesia have increased white matter connectivity compared to unaffected controls.
Autism (including Asperger syndrome) involves social and communication difficulties, alongside unusually narrow interests and activities and resistance to change [22]. Neuroimaging studies of autism indicate that the autistic brain is anatomically and functionally different from the typical brain [3,23,24]. Differences are found in grey and white matter, and cortical connectivity [25,26]. According to one hypothesis, autism is associated with a reduction in long-range neural connections, alongside an increase in local, short-range connectivity [3,4]. This hypothesis may explain aspects of autism such as detail-oriented processing (‘obsessions’). Thus, an increase in local connectivity may play a role in both autism and synaesthesia.
Ten percent of individuals with autism have savant skills (a skill that is above average for the general population), and an estimated 50% of savants have autism [27]. Daniel Tammet, who has both Asperger syndrome and synaesthesia, and who is a memory savant (he memorized Pi to 22,514 decimal places) inspired the hypothesis that savantism arises in individuals who have both autism and synaesthesia. This combination of conditions has been speculated to give rise to strong ‘systemizing’ and excellent attention to detail, both products of neural hyper-connectivity [8,28].
Beyond such single-case reports of synaesthesia in autism, it has been proposed that synaesthesia may be common in autism [29,30]. The idea has tentative indirect support from two different lines of investigation. First, a molecular genetic study of families with auditory-visual synaesthesia found linkage to an area on chromosome 2, in a region that had previously been linked to autism [9]. However, these genetic findings may not overlap since the study by Asher et al. found considerable genetic heterogeneity across families. Moreover, cAMP-GEFII, an interesting candidate gene from the linkage region, harbours rare variants that are associated with autism but not implicated in synaesthesia. Secondly, an event-related potential study found that participants with autism showed occipital (visual cortical) activity while attending to auditory stimuli [31], although the interpretation of this anomaly is unclear. In the present study, we carried out the first direct assessment of overlap between the two conditions.

Methods

In total, 172 adults with autism and 123 typical adults responded and gave electronic consent. These are the subset of those who responded from an email sent to 927 adults with autism and 1,364 typical adults. Participants (aged 18 years old or older) were invited to visit one of two websites (http://www.autismresearchcentre.com webcite orhttp://www.cambridgepsychology.com webcite) hosted by the Autism Research Centre at Cambridge University. Potential participants received an email inviting them to participate in a study on synaesthesia in adults with and without autism. The email defined and briefly described synaesthesia; the definition of synaesthesiaa was provided in the informed consent form. In order to reduce sampling bias, the consent form stressed that all individuals – with autism or synaesthesia, both, or neither – were eligible to participate.
The study was approved by the Psychology Research Ethics Committee of the University of Cambridge. All participants with autism had a diagnosis from a clinical psychologist or psychiatrist from a recognized clinic. All participants were asked to complete two questionnaires online:
thumbnailFigure 1. Scoring protocol for the ToG-R. Each box represents a swatch on the colour chart. From Asher et al. (2006) [32].
(a) The Synaesthesia Questionnaire, adapted from previous studies [9,32]. This was used as a further form of self-report of synaesthesia and to document the subtype(s) experienced. In order to screen out acquired synaesthesia, it also asked a series of questions used as exclusion criteria: whether the person had any medical conditions affecting vision (e.g., colour blindness), any medical condition affecting the brain (e.g., head injury, epilepsy, brain tumour, or stroke), any history of hallucinogenic drug use, and how long the person had experienced synaesthesia. Conservative inclusion criteria were used to judge if any individual had synaesthesia. If any of these questions were answered positively, or if synaesthesia was first experienced in adulthood, then the person was conservatively judged not to have synaesthesia.
(b) The Autism Spectrum Quotient (AQ) [33]. This was used to measure the number of autistic traits, as a check on an autism diagnosis. We excluded from the control group anyone scoring >25, to ensure the controls were representative. This resulted in 26 individuals being excluded.
(c) The Test of Genuineness-Revised (ToG-R) [32]. This was used to validate any self-reported auditory-visual forms of grapheme-colour (GC) and sound-colour (SC) synaesthesia and was sent to all participants in order to detect true and false positives and negatives. The ToG-R is a colour chart that measures consistency in a participant’s reported colour associations to either letters (GC) or sounds (SC) over time. Participants are asked to choose from a colour chart to indicate the closest match evoked by a word (GC) or a sound (SC), and are then re-tested after an interval of at least a month, without warning. Previous work has found that synaesthetes far out-perform controls in the consistency across time in their colour reports to specific stimuli. Consistency scores were based on a point system created by Asher et al. [32] (Figure 1).
The final consistency score was calculated as a percentage:
Consistency=[(Pointsawardedforitems)Totalnumberofitems*3]*100
The total number of points for every item in the test was added (e.g., for the SC ToG-R, the total number of points awarded for stimuli 1–99, inclusive) and this number was divided by the total number of items with valid colour responses multiplied by three, the maximum number of points per item. This is the total number of possible points on the test (e.g., if a person gave valid answers for all 99 sounds, the total number of points possible would be 297). The total number of actual points was divided by the total number of possible points. To yield a percentage, this number was multiplied by 100.

Results

As stated above, 172 adults with autism and 123 typical adults responded and gave electronic consent. Table 1 shows the participant characteristics.
Table 1. Participant characteristics
Eight of the adults with autism were excluded for reporting a self- but not clinician-diagnosed autism. As expected, significant differences were found for mean AQ scores between those with autism (x = 39.63, SD = 6.42) and controls (x = 16.41, SD = 5.37) [t [213] = 26.83, P <0 .001="" adults="" excluded="" for="" of="" scoring="" the="" twenty-six="" typical="" were="">25 on the AQ, leaving a final non-autistic group of n = 97. No group differences were found in age or education, the latter measured by the rate of university attendance (both P >0.05). There was a difference in handedness and in sex ratio, in line with previous studies of autism (both P <0 .05="" a="" name="d47017e569" nbsp="" style="border: 0px; color: #08509e; font-family: inherit; font-style: inherit; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; text-decoration: underline; vertical-align: baseline;">
[34,35]. In the autism group, n = 9 (5.5%) had high functioning autism, n = 153 (93%) had Asperger syndrome, and n = 2 (1.2%) had pervasive developmental disorder, not otherwise specified.
Among the 164 people with autism, 31 (14 male) met inclusion criteria for synaesthesiab (a rate of synaesthesia of 18.9%), which was significantly higher than the 7.22% (n = 7 (1 male)) rate of synaesthesia among the 97 controls (χ2 (1, n = 261) = 6.69, p <0 .05="" 12.37="" 12.91="" 2.07="" 24.89="" 95="" a="" are="" autism="" being="" confidence="" control="" controls="" for="" igure="" in="" intervals="" name="d47017e585" nbsp="" of="" population="" proportion="" range="" rate="" style="border: 0px; color: #08509e; font-family: inherit; font-style: inherit; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; text-decoration: underline; vertical-align: baseline;" synaesthesia="" the="" to="" true="">
2). As Figure 2 shows, there is no overlap in the rates of synaesthesia in autism vs. controls. Tables 2 and 3 show an overview of what types of synaesthesia were reported in each group, and Table 4 shows the number of participants with any type of synaesthesia who completed a GC ToG-R and/or a SC ToG-R.
thumbnailFigure 2. The percentage of people with synaesthesia in each group (autism vs. typical controls).
Table 2. The number who replied and the number who showed Grapheme-Colour (GC), Sound-Colour (SC), or other variants of synaesthesia, or no synaesthesia
Table 3. Number of synaesthetes with and without autism who reported different types of synaesthesia
Table 4. The number in each group who completed a GC ToG-R or SC ToG-R

Because the response rates were low in all cells in Table 4, no statistical analysis was conducted. Telephone follow-up to find out why ToG-Rs were not being completed revealed that participants with autism reported fatigue from the 241 possible choices. We explored if fewer colours would be less stressful [36] but participants with autism reported it would be more stressful to be unable to choose the right colour than to have to choose from a large collection of colours.
Discussion

Our findings indicate that synaesthesia is significantly more common in adults with autism than in typical adults, based on self-report. The rate of synaesthesia in autism (18.9%) was almost three times greater than in the typical sample (7.22%), whose rate overlaps with the 4% reported previously (given confidence intervals) [1]. We predicted that synaesthesia would be more prevalent in autism than in controls if these conditions were interdependent, perhaps because they share some underlying biological causal factor, such as local neural hyper-connectivity. Four mechanisms have been proposed to account for neural hyper-connectivity: faulty axonal pruning, differences in axon guidance, disinhibition, and atypical border formation [37]. Interestingly, a recent study has revealed a significant phenotypic and genetic overlap between synaesthesia and absolute pitch [38], a trait that has also been reported to occur at increased frequency in people with autism [39,40]. This strengthens the case that autism and synaesthesia are linked at multiple levels.
It is possible that the elevated rate of synaesthesia in autism might be explained by people with autism being more likely to report abnormal sensory perceptual experiences than people without the condition. Although it is true that adults with autism score highly on sensory sensitivity questionnaires [41], we doubt this can explain the current results, because our sample included some individuals with autism (n = 3) who claimed they did not have synaesthesia, but were judged by the experimenters to have synaesthesia on the basis of their questionnaire responses. Because they reported not having synaesthesia, we conservatively considered them to be non-synaesthetes. These participants with autism declared that they did not have synaesthesia because they said they were uncertain whether their experiences counted. Thus, the high rate of synaesthesia in autism is unlikely to be an over-estimate, and could even be an under-estimate. A related possible explanation of the comorbid association might be failure in inhibition/greater cortical excitation [42]. This is in line with the high scores on sensory sensitivity questionnaires[43], and is compatible with the finding that synaesthesia occurs more frequently in autism than in the general population.
There are several limitations of this study. First, we were unable to collect complete consistency tests to validate the prevalence estimates, which will be important to explore in future work. It may be the case that traditional ToGs are not suitable for people with autism and that these will require modification. If the ToG-R is used in future studies, it should be completed in person, so that the experimenter can ensure that there is no missing data. Future studies could also consider using computerized immediate retests [44] as alternative ways for validation. It will also be interesting to test if the current results extend to children with autism, or to more impaired individuals with autism, since our sample only included high-functioning adults. Second, response rates to the initial invitations were low, which is not unusual in survey research [45], therefore, other studies must become available to confirm the observed synaesthesia prevalence rates observed, and extrapolation from the current study should be done with caution until other such surveys have been conducted. Third, this question has not yet been tested in different clinical groups to assess if this link is specific to autism. Fourth, it would be interesting to test how people with autism and synaesthesia differ from those with autism alone. As far as we know, there has not yet been a study investigating autism vs. synaesthesia vs. comorbidity between these two conditions using MRI or fMRI, which should now become a research priority in this area. Fifth, we recognize that the Synaesthesia Questionnaire is a self-report instrument that in future studies needs to be evaluated in terms of its reliability and validity. Most importantly, the next step in future research must be to explore the biological mechanisms causing the elevated rate of synaesthesia in autism.

Conclusions

The significant increase in synaesthesia prevalence in autism suggests that the two conditions may share some common underlying mechanisms. Future research needs to develop more feasible validation methods of synaesthesia in autism.

Endnotes

aSynaesthesia is a condition in which a sensation in one sensory modality automatically triggers a response in a different sensory modality. For instance, a person with ‘coloured hearing’ synaesthesia sees colours after hearing sounds… Although most synaesthetic responses are visual, synaesthesia can involve any pair of senses. Some people even experience more than one type of synaesthesia. The following are examples of what people with synaesthesia might say, “The letter q is dark brown”; “The sound of a bell is red”; “The word hello tastes like coffee”; “A toothache is shaped like a rectangle”.
bTo be considered synaesthetic, participants had to report that they experienced synaesthesia and could not meet any of the exclusion criteria (see Methods).

Abbreviations

AQ: Autism spectrum quotient; GC: Grapheme-colour; SC: Sound-colour; ToG-R: Test of Genuineness-Revised.

Competing interests

The authors declare no competing interests.

Authors’ contributions

SBC, DJ, SW, and CA designed the study. SBC and DJ drafted the manuscript and SEF, JA, and PG contributed to the manuscript. DJ and CA took responsibility for data analysis. All authors read and approved the final manuscript.

Acknowledgments

This work was submitted in part fulfilment of the degree of Master of Philosophy by DJ. It was conducted in association with the NIHR CLAHRC for Cambridgeshire and Peterborough. DJ was funded by the Gates Foundation. SBC and SW were funded by the MRC UK. SEF was funded by the Max Planck Society.

References

  1. Simner J, Mulvenna C, Sagiv N, Tsakanikos E, Witherby SA, Fraser C, Scott K, Ward J:Synaesthesia: the prevalence of atypical cross-modal experiences.
    Perception 2006, 35:1024-1033. PubMed Abstract | Publisher Full Text OpenURL
  2. Baron-Cohen S, Scott A, Williams B, Matthews B: Autism spectrum prevalence: a school-based U.K. population study.
    Br J Psychiatry 2009, 194:500-509. PubMed Abstract | Publisher Full Text OpenURL
  3. Just MA, Cherkassky VL, Keller TA, Minshew NJ: Cortical activation and synchronizatioin during sentence comprehension in high-functioning autism: evidence of underconnectivity.
    Brain 2004, 127:1811-1821. PubMed Abstract | Publisher Full Text OpenURL
  4. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper R, Webb SJ: Autism and abnormal development of brain connectivity.
    J Neurosci 2004, 24:9228-9231. PubMed Abstract | Publisher Full Text OpenURL
  5. Baron-Cohen S: Is there a phase of synaesthesia in normal development?
    Psyche 1994.
    Special issue on Synaesthesia
    OpenURL
  6. Baron-Cohen S, Wyke M, Binnie C: Hearing words and seeing colours: an experimental investigation of a case of synaesthesia.
    Perception 1987, 16:761-767. PubMed Abstract | Publisher Full Text OpenURL
  7. Rich AN, Bradshaw JL, Mattingley JB: A systematic, large-scale study of synaesthesia: implications for the role of early experience in lexical-colour associations.
    Cognition 2005, 98:53-84. PubMed Abstract | Publisher Full Text OpenURL
  8. Baron-Cohen S, Bor D, Billington J, Asher J, Wheelwright S, Ashwin C: Savant memory in a man with colour-number synaesthesia and Asperger Syndrome.
    J Conscious Stud 2007, 14:237-251. OpenURL
  9. Asher J, Lamb JA, Brocklebank D, Cazier J-B, Maestrini E, Addis L, Sen M, Baron-Cohen S, Monaco AP: A whole-genome scan and fine-mapping linkage study of auditory-visual synesthesia reveals evidence of linkage to chromosomes 2q24, 5q33, 6p12, and 12p12.
    Am J Hum Genet 2009, 84:279-285. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL
  10. Barnett KJ, Finucane C, Asher J, Bargary G, Corvin AP, Newell FN, Mitchell KJ: Familial patterns and the origins of individual differences in synaesthesia.
    Cognition 2008, 106:871-893. PubMed Abstract | Publisher Full Text OpenURL
  11. Baron-Cohen S, Burt L, Laittan-Smith F, Harrison JE, Bolton P: Synaesthesia: prevalence and familiarity.
    Perception 1996, 25:1073-1079. PubMed Abstract | Publisher Full Text OpenURL
  12. Harrison J, Baron-Cohen S: Synaesthesia: an introduction. In Synaesthesia. Edited by Baron-Cohen S, Harrison J. Malden: Blackwell Publishing; 1997. OpenURL
  13. Witthoft N, Winawer J: Learning, memory, and synesthesia.
    Psychol Sci 2013, 24:258-265. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL
  14. Baron-Cohen S, Harrison J: Synaesthesia: a challenge for developmental cognitive neuroscience. In Neurodevelopmental Disorders. Edited by Tager-Flusberg H. Cambridge, MA: MIT Press; 1999. OpenURL
  15. Nunn J, Gregory L, Morris R, Brammer M, Bullmore E, Harrison J, Williams S, Baron-Cohen S, Gray J: Functional magnetic resonance imaging of synaesthesia: activation of colour vision area V8 by spoken words.
    Nat Neurosci 2002, 5(4):371-375. PubMed Abstract | Publisher Full Text OpenURL
  16. Paulesu E, Harrison J, Baron-Cohen S, Watson J, Goldstein L, Heather J, Frakowiak R, Frith C: The physiology of coloured hearing: a Positron Emission Tomography activation study of coloured-word synaesthesia.
    Brain 1995, 118:661-676. PubMed Abstract | Publisher Full Text OpenURL
  17. Sperling JM, Prvulovic D, Linden DEJ, Singer W, Stirn A: Neuronal correlates of colour-graphemic synaesthesia: a fMRI study.
    Cortex 2006, 42:295-303. PubMed Abstract | Publisher Full Text OpenURL
  18. Rouw R, Scholte HS: Increased structural connectivity in grapheme-color synesthesia.
    Nat Neurosci 2007, 10:792-797. PubMed Abstract | Publisher Full Text OpenURL
  19. Maurer D, Bd SS, JP M, Morton J: Neonatal synesthesia: implications for the processing of speech and faces. In Developmental Neurocognition: Speech and Face Processing in the First Year of Life. Edited by Boysson-Bardies D. Dordrecht: Kluwer Academic Publishers; 1993. OpenURL
  20. Ramachandran VS, Hubbard EM: Psychophysical investigations into the neural basis of synaesthesia.
    Proc R Soc London B 2001, 268:979-983. Publisher Full Text OpenURL
  21. Hubbard EM, Ramachandran VS: Neurocognitive mechanisms of synesthesia.
    Neuron 2005, 48:509-520. PubMed Abstract | Publisher Full Text OpenURL
  22. APA: Diagnostic and Statistical Manual of Mental Disorders. 4th edition. Washington, DC: APA; 2000. OpenURL
  23. Courchesne , Karns C, Davis H, Ziccardi R, Carper R, Tigue B, Chisum H, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY:Unusual brain growth patterns in early life of patients with autistic disorder.
    Neurology 2001, 57:245-254. PubMed Abstract | Publisher Full Text OpenURL
  24. Courchesne , Carper R, Akshoomoff NA: Evidence of brain overgrowth in the first year of life in autism.
    J Amer Med Assoc 2003, 290:337-344. Publisher Full Text OpenURL
  25. Akshoomoff N, Pierce K, Courchesne E: The neurobiological basis of autism from a developmental perspective.
    Dev Psychopathol 2002, 14:613-634. PubMed Abstract OpenURL
  26. Minshew NJ, Williams DL: The new neurobiology of autism: cortex, connectivity, and neuronal organization.
    Arch Neurol 2007, 64:945-950. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL
  27. Treffert DA: The savant syndrome: an extraordinary condition: a synopsis: past, present, future.
    Phil Trans R Soc B 2009, 364:1351-1357. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL
  28. Bor D, Billington J, Baron-Cohen S: Savant memory for digits in a case of synaesthesia and asperger syndrome is related to hyperactivity in the lateral prefrontal cortex.
    Neurocase 2007, 13:311-319. PubMed Abstract | Publisher Full Text OpenURL
  29. Cesaroni L, Garber M: Exploring the experience of autism through first-hand accounts.
    J Autism Dev Disord 1991, 21:303-313. PubMed Abstract | Publisher Full Text OpenURL
  30. Bogdashina O: Sensory Perceptual Issues in Autism: Different Sensory Experiences- Different Perceptual Worlds. London: Jessica Kingsley; 2003. OpenURL
  31. Kemner C, Verbaten MN, Cuperus JM, Camfferman G, van Engeland H: Auditory event-related brain potentials in autistic children and three different control groups.
    Biol Psychiatry 1995, 38:150-165. PubMed Abstract | Publisher Full Text OpenURL
  32. Asher J, Aitken MRF, Farooqi N, Kurmani S, Baron-Cohen S: Diagnosing and phenotyping visual synaesthesia - a preliminary evaluation of the revised test of genuineness (TOG-R).
    Cortex 2006, 42(2):137-146. PubMed Abstract | Publisher Full Text OpenURL
  33. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E: The autism spectrum quotient (aq): evidence from asperger syndrome/high functioning autism, males and females, scientists and mathematicians.
    J Autism Dev Disord 2001, 31:5-17. PubMed Abstract | Publisher Full Text OpenURL
  34. McManus IC, Bryden MP: The genetics of handedness, cerebral dominance and lateralisation. In Handbook of Neuropsychology. 6th edition. Edited by Ragin I, Sagalowitz SJ. Amsterdam: Elsevier; 1992:115-144. OpenURL
  35. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R: Why are autism spectrum conditions more prevalent in males?
    PLoS Biol 2011, 9(6):e1001081. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL
  36. Simner J, Harrold J, Creed H, Monro L, Foulkes L: Early detection of markers for synaesthesia in childhood populations.
    Brain 2009, 132:57-64. PubMed Abstract | Publisher Full Text OpenURL
  37. Bargary G, Mitchell KJ: Synaesthesia and cortical connectivity.
    Trends Neurosci 2008, 31:335-342. PubMed Abstract | Publisher Full Text OpenURL
  38. Gregersen P, Kowalsky E, Lee A, Baron-Cohen S, Fisher S, Asher J, Ballard D, Freudenberg J, Li W: Absolute pitch exhibits phenotypic and genetic overlap with synesthesia.
    Hum Mol Genet 2013, 22(10):2097-2104. PubMed Abstract | Publisher Full Text OpenURL
  39. Dohn A, Garza-Villarreal E, Heaton P, Vuust P: Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study.
  40. DePape A-M, Hall G, Tillman B: Auditory processing in high-functioning adolescents with autism spectrum disorder.
  41. Tavassoli T, Auyeung B, Murphy L, Baron-Cohen S, Chakrabarti B: Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children.
  42. Terhune D, Tai S, Cowey A, Popescu T, Cohen Kadosh R: Enhanced cortical excitability in grapheme-color synesthesia and its modulation.
    Curr Biol 2011, 21:2006-2009. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL
  43. Cohen Kadosh R, Henik A: Can synaesthesia research inform cognitive science?
    Trends Cogn Sci 2007, 11:177-184. PubMed Abstract | Publisher Full Text OpenURL
  44. Eagleman DM, Kagan AD, Nelson SS, Sagaram D, Sarma AK: A standardized test battery for the study of synesthesia.
    J Neurosci Methods 2007, 159:139-145. PubMed Abstract | Publisher Full Text OpenURL
  45. Baron-Cohen S, Scott F, Allison C, Williams J, Bolton P, Matthews F, Brayne C: Prevalence of autism-spectrum conditions: UK school-based population study.
    Br J Psychiatry 2009, 194(6):500-509. PubMed Abstract | Publisher Full Text OpenURL